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A method we call the slide-and-match algorithm is presented whereby any transmitter-receiver pair of
identical, chaotic maps may be synchronized using almost any scalar function of the driving transmitter state,
transmitted to the receiver as the synchronizing signal. No prior investigation of either the map or the signal
generating function is required. In order to illustrate the concepts, numerical simulations of applications are
presented.
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Over the last decade, there has been considerable interest
in the synchronization of chaotic systems �1,2�, particularly
on account of its potential application to communication
�3–12�. In this context, the setup involves two identical sys-
tems described by the same set of nonlinear evolution equa-
tions �but with different initial conditions� that lead to the
same chaotic attractor. A scalar signal stream �often a state
variable� is transmitted from one of the two systems �the
transmitter� to the other �the receiver�, in the hope that it can
be used to synchronize the receiver to the transmitter. Sev-
eral techniques have been invented to achieve the actual syn-
chronization �1,2,7,13–23�.

While these methods often work, whether two dynamical
systems successfully synchronize or not depends on the
choice of both the driving signal and the synchronization
algorithm. For example, when using the x coordinate value to
synchronize two Rossler systems, the method described in
Ref. �2� fails while a different method involving nonidentical
subsystems succeeds �19�. However, given embedding
�24–26�, it would appear reasonable that the infinite time
series of almost any scalar function �of the state variables�
would be sufficient to completely determine the state of the
system, and therefore be sufficient for synchronization �27�.
In this paper, we present a method that achieves just that
�28�.

First, we clearly state the problem at hand. We have a pair
of identical, chaotic, dynamical systems which we call the
transmitter and the receiver. Their time-i state vectors are

represented by X� i and Y� i, respectively. Let M represent the
map that evolves the dynamical system. We restrict ourselves
here to mixing, chaotic maps �29� with just one Lyapunov
exponent positive, and the rest negative. We also have a sca-

lar function f�X� � whose form is known to both the sides.
When applied to the transmitter state vector, it generates the
signal si which is transmitted to the receiver. When applied
to the receiver state vector, it generates the pseudosignal
which is visible to the synchronizing mechanism. Our objec-
tive is to present a scheme that uses the signal to synchronize
the state of the receiver to that of the transmitter.

Consider the fate of an � ball �of the same dimension as
the dynamical system� of initial conditions centered at some

Y� 0, on A, the chaotic attractor of M. Since M has only one
positive Lyapunov exponent, and the rest are negative, evo-
lution stretches the � ball along one direction only while

shrinking it along all the others. To preserve finiteness, we
truncate the ends at every iterate. After a sufficient number of
iterates the image of the � ball �see Fig. 1� looks like an

essentially one-dimensional curve Li, lying in A, with Y� i, the

corresponding image of Y� 0, contained within it. Thus follows

the concept of the local unstable manifold at Y� i correspond-

ing to a semi-infinite orbit “¯Y� i−2Y� i−1Y� i.” Let Ci be a curve

of finite length lying in A and containing Y� i. We then define
its local preimage Ci

−1 as the shortest curve, also lying in A,

and containing Y� i−1, whose forward image is Ci. If Ci satis-

fies the additional property limn→�Ci
−n=Y� i−n �Ci

−n is the nth
local preimage of Ci�, then we identify Ci with Li, �a section

of� the local unstable manifold at Y� i at iterate i �30�. An
interesting property of the dynamics near Li is that points in
the vicinity of Li converge onto Li under iteration, although
they diverge away from one another along Li. We shall ex-
ploit this feature.

Since the transmitter and the receiver are identical sys-
tems with states evolving on identical chaotic attractors, er-

godicity guarantees that X� i and Y� i will come arbitrarily close

arbitrarily often. But we simply require that X� i come close to
any part of Li—a situation far less restrictive and, conse-
quently, more frequent. Once that occurs, further iteration

FIG. 1. The evolution of an � ball for a dynamical system de-
scribed by a discrete map with only one positive Lyapunov expo-
nent and no zero Lyapunov exponents. The + symbol represents the

state vector Y� i.
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will only bring Li and X� i progressively closer. Synchroniza-

tion may then be achieved simply by sliding Y� i along Li to

the part that is close to X� i. The transmitted signal si is suffi-
cient to identify this part. Thus follows the essence of our
slide-and-match synchronization algorithm: at each iterate,
slide the receiver system along its local unstable manifold
just far enough for the pseudosignal to match the transmitted
signal.

Note that since the receiver cannot see X� i it cannot tell

when Li and X� i are close enough for the prescription to be

applied. However, since Li lies in A, sliding Y� i along Li by
arbitrary distances, never pushes it off A. Thus it is safe to
leave the mechanism switched on at all times.

Symbolically, our slide-and-match synchronization
scheme may be expressed as follows:

Transmitter: X� i = M�X� i−1�; si = f�X� i� . �1�

Receiver: Y� i− = M�Y� i−1�; f�Y� i� = si; �2�

Y� i− � Li; Y� i � Li, �3�

where Y� i− and Y� i represent the pre-slide and the post-slide

receiver state vectors at iterate i. Solving f�Y� i�=si while si-

multaneously satisfying the condition Y� i�Li determines Y� i.
Equation �2� assumes that such a solution is available.
Should no solution exist �this is typically the case during the
initial transient before synchronization gets a chance to set

in�, then Y� i is set equal to Y� i−. In case of multiple solutions,

we choose the one whose distance from Y� i−, as measured
along Li, is the smallest �31�.

Successful implementation of the proposed scheme is cru-
cially contingent upon reliable and efficient computation of
the local unstable manifold at each iterate. It would be easi-
est to approximate the manifold at each point as the local
tangent vector, but such a linearized approach breaks down
in the presence of very little noise. Including higher order
Taylor expansion terms to better approximate the shape of Li,
or employing filtering techniques �using, perhaps, the Kal-
man filter �21,32�� might help, but are generally computa-
tionally expensive. Instead we adopt the following tech-
nique: we approximate the local unstable manifold at some

Y� i as a piecewise-straight line, L̃i, with its middle vertex at Y� i
�33�.

Given L̃i , si, and Y� i−, solving for Y� i on L̃i is straightfor-

ward. However, evolving L̃i is complicated by the natural

tendency of Li �and therefore L̃i� to both stretch and fold
under iteration. Therefore, at each iterate i, we first pick a

few points on L̃i−1 close to Y� i−1 ensuring that the piecewise-
straight line defined by them satisfies the following condi-
tions: �i� no segment is longer than a preset value, �ii� no two
adjacent segments form an angle smaller than a preset value,
and �iii� the total length of the line is sufficiently large com-
pared to the sliding distances, i.e., the distances between the

Y� i’s and the Y� i−’s as measured along the corresponding L̃i’s.

The chosen points are then evolved using M to obtain L̃i.
We now present two examples to illustrate our algorithm.

First, we choose the Ikeda system. Denoting X� ��x ,y� as its
state vector, we can describe its evolution by the following
two-dimensional map �34�:

xi+1 = a + b�xicos��i� − yisin��i�� , �4�

yi+1 = b�xisin��i� + yicos��i�� , �5�

where �i=�−� / �1+xi
2+yi

2�. We pick parameter values a=1,
b=0.9, �=0.4, and �=6.0. The corresponding chaotic attrac-
tor and a typical, piecewise linear approximation to the local
unstable manifold are shown in Fig. 2�a�. Figure 3 illustrates
the synchronization of a pair of such systems using various
scalar signals.

Our second example involves the forced, damped, double
pendulum. This is a mechanical device consisting of a uni-
form rod suspended by a hinge from a second rod which is,
in turn, suspended from a support by a second hinge �see Fig.
4�. The rods �pendula� are free to swing in a vertical plane. �
and � represent the deviations of the inner and the outer
pendula from the vertical, while m1 ,m2 and l1 , l2 represent
their masses and lengths, respectively. Viscous dissipation is
provided by linear friction at the hinges with �1 and �2 as
the coefficients of friction �viscosity�. An external forcing
mechanism vertically oscillates the top support sinusoidally
with amplitude � and frequency 	. Without loss of general-
ity, we set m1= l1=g=1 �g is the acceleration due to gravity�,
and drop the subscripts from m2 and l2 to obtain

�̇ = u , �6�

�̇ = v , �7�

u̇ =
1

D
�� l2

6
�F1 − �ml cos�� − ��

4
�F2	 , �8�

FIG. 2. Piecewise-linear approximations of the local, unstable

manifold L̃ using 50 segments. The large circles represent the state

vector Y� , the small circles represent the other vertices, and the back-
ground shows the corresponding chaotic attractor. �a� The Ikeda
map with a=1, b=0.9, �=0.4, and �=6.0. �b� The forced, damped,
double-pendulum system with l=1, m=0.5, �1=0.25, �2=0.125,
�=0.375, and 	=
. This is a five-dimensional system described by
a four-dimensional map. The plot depicts a two-dimensional projec-
tion onto the �-� plane. � and � are plotted in radians.
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v̇ =
1

D
��− l cos�� − ��

4
�F1 + �3m + 1

6
�F2	 , �9�

where

F1 = − mlv2sin�� − �� − g̃�2m + 1�sin��� − 2�1u

+ 2�2�v − u� , �10�

F2 = lu2sin�� − �� − g̃l sin��� − 2�2�v − u�/m , �11�

D = l2�3m + 1�/9 − ml2cos�� − ��2/4, �12�

g̃ = 1 − �	2sin�	t� . �13�

The time-�2
 /	� strobed Poincaré section reduces this five-
dimensional system to a map with a four-dimensional state

vector X� ��� ,� ,u ,v�, where all the quantities are measured
at the beginning of every forcing cycle. We pick parameter
values l=1, m=0.5, �1=0.25, �2=0.125, �=0.375, and 	
=
. The corresponding chaotic attractor and a typical, piece-

wise linear approximation to the local unstable manifold are
shown in Fig. 2�b�, while the synchronization of a pair of
such systems using various scalar signals is illustrated in
Fig. 5.

The primary advantage of the slide-and-match synchroni-
zation scheme presented here is that it works for any pair of
identical chaotic maps with one positive Lyapunov exponent
�and the other Lyapunov exponents negative� and for almost
any �35� scalar signal, the functional form of which is known
to both sides. No detailed, prior investigation of either the
map or the signal generating function is required. Further-
more, the complexity of the algorithm is independent of the
system dimension. No matter how high the system dimen-
sion may be, the slide-and-match algorithm reduces synchro-
nization to an essentially one-dimensional problem �36�.

The proposed scheme shares a few similarities with some
known methods for observer design �22,23� and synchroni-
zation �20�—they all exploit the intrinsic contraction and ex-
pansion properties of the underlying dynamics. However, an
important difference is that our method provides for synchro-
nization adjustments along the manifold, L̃i, which is nonlin-
ear and yet, easily implemented on the computer. Thus in
order for our synchronization algorithm to succeed, it is suf-

ficient for the transmitter state vector X� i to come close to any

part of L̃i, rather than to the receiver state vector, Y� i, specifi-

cally. Since L̃i is a curve of positive length, this leads to
quicker synchronization. By the same token, for synchroni-
zation to be destroyed, any noise in the system must be

strong enough to push the entire L̃i �not just Y� i� away from

X� i. This improves the noise resistance, leading to fewer
noise-induced desynchronization bursts.

Finally, the algorithm has the important, useful feature
that in the course of the synchronization adjustments, the
receiver state vector always remains on the chaotic attractor.
This prevents it from escaping the basin of attraction of the
chaotic attractor of interest before achieving synchronization.

The above advantages should make slide-and-match use-
ful for practical applications requiring synchronization of

FIG. 3. The synchronization error, defined
here as the Euclidean distance between the trans-
mitter and receiver state vectors, is plotted as a
function of the iterate number, thus illustrating
the synchronization of two identical Ikeda sys-
tems for various signal-generating, scalar func-

tions f�X� �. At iterate 0, the transmitter and re-
ceiver state vectors are typically far apart. The
parameter values are a=1, b=0.9, �=0.4, and �
=6.0. A little noise was added to prevent exact

synchronization. �a� f�X� �=x; �b� f�X� �=y; �c�
f�X� �=x2+y2; �d� f�X� �=x2−y2.

FIG. 4. The forced, damped, double pendulum.
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chaos, e.g., communication with chaos, observer design.
However, a disadvantage of the method is that it almost cer-
tainly requires a computer as part of the setup, while many of
the other methods present in literature may be implemented
using much simpler components.

Summing up, we have presented a different synchroniza-
tion scheme that synchronizes two chaotic maps using al-
most any scalar signal. We expect the fundamental principle
underlying the method to hold good for hyperchaotic sys-
tems with multiple positive Lyapunov exponents, as well.
That is, we expect that adjustments along just the local un-
stable manifold should be sufficient for synchronization.

Thus the complexity of the algorithm is expected to be de-
termined by the dimensionality of the local unstable mani-
fold only rather than by that of the complete dynamical
system—a significant simplification for high-dimensional
systems. Unfortunately, the previously mentioned difficulties
associated with the stretching and the folding of the local
unstable manifold prove severe when the local unstable
manifold needs to be approximated by a multidimensional
mesh rather than by a piecewise-straight line. This makes the
software implementation of generalized slide-and-match
synchronization for hyperchaotic systems challenging, and
will be the subject of future work.
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�36� There is a caveat associated with this point. Clearly, the suc-
cess of the synchronization algorithm presented in this paper is
contingent upon the one-dimensional nature of the local un-
stable manifold. On average, this condition is indeed satisfied
by chaotic maps with just one Lyapunov exponent positive,

and the others all negative. However, even for such systems,
the local, unstable manifold may, at places, be multidimen-
sional. For example, it is possible for the chaotic attractor A to
have embedded within it unstable periodic orbits with multidi-
mensional, unstable manifolds. Therefore when the transmitter

state vector X� i and consequently the receiver state vector Y� i

come close to such an embedded periodic orbit, multiple de-
grees of freedom are generally necessary in order to appropri-

ately slide Y� i close to X� i and maintain synchronization. Under
such circumstances, the piecewise linear approximation to the
local unstable manifold proves inadequate. Consequently, the

distance between X� i and Y� i then increases. Fortunately, for sys-
tems with a single positive Lyapunov exponent �with the re-
maining Lyapunov exponents all negative�, the time spent in
such regions of multidimensional, local unstable manifolds is

typically small. Therefore before the distance between X� i and

Y� i grows too large, the systems typically return to regions with
single-dimensional, local unstable manifolds. Then, the syn-
chronization algorithm presented in this paper quickly brings

Y� i close to X� i once again. This entire process manifests itself as

a spike in the synchronization error, 
X� i−Y� i−
. Many such
spikes are visible in Figs. 3 and 5. If the experiment is run for
a very long time, then it is likely that a situation will be en-
countered where the systems spend a relatively long time in a
region with a multidimensional, unstable manifold �e.g., imag-

ine if X� i and Y� i happen to come very close to one of the
aforementioned unstable periodic orbits embedded within A�.
Then the distance between X� i and Y� i can grow large and break
synchronization. But the time interval between such desyn-
chronization bursts will be long provided the noise inherent in
the setup �this is what determines the typical synchronization
error� remains small. For a proper remedy to this problem one
must use a multidimensional approximation to the local un-
stable manifold rather than the piecewise linear approximation
described in this paper. A more detailed reference to this is
included in the last paragraph.
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